Welcome to Ctanujit Institute of Statistics & Mathematics...An Initiative by 'ISI'ian

Urgent Notice:

Due to unavoidable reason, Ctanujit Classes will be closed from 1st November to 30th November 2018.
Postal Package will be available from 1st December 2018.



For both CMI,ISI,IOMA entrance for bachelors & masters degree you have to go through the problems of theory of equations.Here is your solution of some questions from ISI papers.

Q1.  If a1,a2,a3, . . . . .,an be the roots of x^n + 1 = 0, then (1-a1)(1-a2) . . . . .(1-an) is
A. 0          B.1          C.2         D.none
Ans :(C) x^n + 1 =(x-a1)(x-a2) . . . (x-an)
Putting x=1 , so ans is=2.

Q2. Consider the equation of the form
x^2 + bx + c = 0 .The number of number of such equations that have real roots & have coefficient b & c in the set {1,2,3,4,5,6} (b may be equal to c),is
A. 16          B. 19          C. 21         D.None
Ans : (B) Let the given equation has real roots,then b^2 - 4c >= 0
S={1,2,3,4,5,6} Now S1={4,8,12,16,20,24}=set of possible values of 4c .
Thus the number of equations will be same as the number of pairs of elements (m,n) , m€S,n€S1 such that m^2 - 4n >=0 , i.e. 1+2+4+6+6=19.

Q3. The sum of the cubes of the roots of the equation x^4+ ax^3+bx^2+cx+d=0 is
A.a^3 -3c         B.3ab-a^3         C.3ab-c         D.none
Ans : (D) Use the relation between roots & co-efficients of equations. The and is= 3ab-3c-a^3.

Q4. Let f(x)=(x-a)^3+(x-b)^3+(x-c)^3 ,a<b<c. Then the no of real roots of f(x)=0 is
A.3               B.2            C.1           D.none
Ans :(C) Here f'(x) > 0 for all x.
So f(x) is an increasing function
Note f(x) < 0 if x<a
          f(x)>0 if x>c
There is only one root between a & c.

Q5. If a,b,c,d are such that a<b<c<d,then show that the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are real & distinct.
Ans : Here f(a) > 0   f(b) < 0
f(c) < 0   f(d) > 0. 
So there exists two real & distinct roots between a,b & c,d.

Q6. Find the no of positive & negative real roots of the equation x^4+x^3+x^2 -x-1=0.
Ans : Descartes Sign rule :
f(x)=0 has only one sign change.i.e. It gas one positive real root.
f(-x)=0 has 3 sign changes. It has maximum 3 negative real roots.

Q7. Let f(x)=x^3 +3x-2 .Then the no of real roots f(x)=0 has
A. 0        B.1        C.2          D.3
Ans : (B) f'(x) > 0 for all x.
Here f(-1) <0 & f(2) >0 .It has one real root.

Q8.The equation 1/3 +1/2*s^2+1/6*s^3=s has exact solution(s) in [0,1] is
A. 0           B. 1         C.3           D.2
Ans : (D) Here f(s)=1/3 +1/2*s^2+1/6*s^3 -s
f'(s)=1/2*s^2 +s-1 =1/2*(s-a)(s-b)
f'(s)>0 if s<a or s>b. f'(s)<0 if a<s<b.
There are two roots.

Q9.  The no of real roots of the equation 2Cos{(x^2 + x)/6} = 2^x + 2^-x is
A. 0          B.1          C.2           D.infinitely many
Ans : (D)
Cos{(x^2 + x)/6}={2^x + 2^-x}/2 >= 1 by AM>= GM inequality .
But Cos{(x^2 + x)/6}<=1,we know.
So the value of the cos fiction is 1=cos(npie/2)
So, (x^2 + x)/6=npie/2 implying
x^2 + x - 3n(pie)=0 here discriminant=1+12n(pie)>= 0 for all n>=0
There are infinitely many roots.

Q10. The number of real values of x satisfying  the equation x*2^(1/x) + (1/x)*2^x =4 are
A.1          B.2        C.3         D.4
Ans : (A)  If x<0 then L.H.S.<0 , R.H.S.>0
If x=0 LHS is not defined.
If x>0 Use AM>= GM inequality in the L.H.S.,we have LHS>=4, So x=1.

Q11. The integral roots of 5x^3 -11x^2 +12x -2=0 are
A.(1,2,3)         B.(2,3,4)           C.(3,4,5)           D.none
Ans : (D) Here the constant term is -2 ,so the divisisors of the constant term is 1,-1,2,-2. So let us put x=1,-1,2,-2 in f(x) .
But f(x) is not equals to zero in for x=1,-1,2,-2.Hence,it has no integral roots.

Q12. The sum of the roots of the equation x^7 +9x^6 -2=0 is
A.0        B.3        C.-9       D.7
Ans : (C)  sum of the roots= -(Coefficient of x^6)/(Coefficient of x^7)=-9.

Q13. The equation Cos(e^x)=2^x + 2^-x has real roots
A.1          B.3        C.0           D.none
Ans : (C) -1<=Cos(e^x)<=1 but { 2^x + 2^-x }>1 always for all x.
So it has no real roots.

Q14. The no of real roots of the equation
 3x^6 + 5x^4 + 9x^2 +1 =0 is
A.6        B.4       C.2        D.None
Ans : (D) Here f(x) & f(-x) have no changes of signs. Hence f(x)=0 has no real root.

Q15. If P(x) be a polynomial of degree 11 such that P(x)=1/(1+x) for x=0(1)11 .Then P(12) is
A.0        B.1        C.1/13       D.none
Ans: (A)  [P(x)](x+1)-1=c(x-0)(x-1) . . .(x-11)
Put x=-1,then we get c=-1/12!
Then put x=12,then P(12)=0.

Q16. If P(n)=P(-n) where P(x) be a non-constant function then P'(0)=?
Ans : P(x) is an even function of x.
Then P(x) have all the powers of x as even.
P'(x) does not have any constant term,so P'(0)=0.

Q17.The number of solutions of the equation |x|=Cosx is
A.1         B.2       C.3        D.None
Ans : (B) Draw both graphs & see they intersects at two points which are the required two solutions.

Q18. The number of real solutions of the equation (9/10)^x =-x^2+x-3 is
A.0         B.1        C.2         D.None
Ans : (A) (9/10)^x=-(x-0.5)^2 -11/4
Here the LHS is always positive & the RHS is always negative,so it has no solution.

Q19. The equation    x=e^x    has real roots
A. 1        B.2       C.0       D.none
Ans: (C) draw the graph.

Q20. S.T. The equation has at least one positive root not exceeding 1.
Ans : f(-1)<0  f(0)<0  f(1)>0 
There exists at least one positive root in (0,1).